

UTKAL INSTITUTE OF ENGINEERING & TECHNOLOGY

DISCIPLINE:	SEMESTER:			
Civil Engineering	5 [™] Sem	NAME OF THE TEACHING FACULTY: ER. TEJASWINI DAS		
SUBJECT: WATER SUPPLY &WASTE WATER ENGINEERING	No of Days/Per week class allotted: 5 Class P/W(77)	Semester From Date:15/09/2022 To Date:22/12/2022 No. Of Weeks: 16		
WEEK	CLASS DAY	THEORY TOPICS <u>SECTION-A</u> <u>(WATER SUPPLY)</u>	REM	ARKS
1 st	1 st	1.Introduction to Water Supply, Quantity and Quality of water	Date	Dean/Prin cipal
		1.1 Necessity of treated water supply		
	2^{nd}	1.2 Per capita demand, variation in demand and factors affecting demand		
	3 rd	1.2 Per capita demand, variation in demand and factors affecting demand		
	4 th	1.3 Methods of forecasting population		
	5 th	Numerical problems using different methods		
	1 st	Numerical problems using different methods		

	2 nd	1.4 Impurities in water – organic and inorganic, Harmful effects of impurities
2^{nd}	3 rd	1.5 Analysis of water –physical, chemical and bacteriological
	$4^{\rm th}$	1.5 Analysis of water –physical, chemical and bacteriological
	5^{th}	1.6 Water quality standards for different uses
		2.Sources Of Water
	1 st	2.1 Surface sources – Lake, stream, river and impounded reservoir
	2 nd	2.2 Underground sources – aquifer type & occurrence – Infiltration gallery, infiltration well, springs, well
3 rd	3 rd	2.2 Underground sources – aquifer type & occurrence – Infiltration gallery, infiltration well, springs, well
	4 th	2.3 Yield from well- method s of determination, Numerical problems using yield formulae (deduction excluded)
	5 th	2.4 Intakes – types, description of river intake, reservoir intake, canal intake

		-	
	1^{st}	2.5 Pumps for conveyance & distribution – types, selection, installation	
	2 nd	2.6 Pipe materials – necessity, suitability, merits & demerits of each type	
4 th	3 rd	2.7 Pipe joints – necessity, types of joints, suitability, methods of jointing	
	4^{th}	Laying of pipes – method	
		3.Treatment of water	
	5 th	3.1 Flow diagram of conventional water treatment system	
	1 st	3.2 Treatment process / units : 3.2.1 Aeration ; Necessity	
	2 nd	3.2 Treatment process / units : 3.2.2 Plain Sedimentation : Necessity, working principles, Sedimentation tanks – types, essential features, operation & maintenance	
5 th	3 rd	3.2.3 Sedimentation with coagulation: Necessity, principles of coagulation, types of coagulants, Flash Mixer, Flocculator, Clarifier (Definition and concept only)	

	4 th	3.2.3 Sedimentation with coagulation: Necessity, principles of coagulation, types of coagulants, Flash Mixer, Flocculator, Clarifier (Definition and concept only)	
	5 th	3.2.4 Filtration : Necessity, principles, types of filters	
	1 st	Slow Sand Filter, Rapid Sand Filter and Pressure Filter – essential features	
	2 nd	3.2.5 Disinfection : Necessity, methods of disinfection	
6 th	3 rd	Chlorination – free and combined chlorine demand, available chlorine, residual chlorine, pre- chlorination, break point chlorination, super- chlorination	
	4 th	Chlorination – free and combined chlorine demand, available chlorine, residual chlorine, pre- chlorination, break point chlorination, super- chlorination	
	5 th	3.2.6 Softening of water – Necessity, Methods of softening – Lime soda process and Ion exchange method (Concept Only)	

	1 st	3.2.6 Softening of water – Necessity, Methods of softening – Lime soda process and lon exchange method (Concept Only)	
	and	4.Distribution system And Appurtenance in distribution system:	
7 th		4.1 General requirements, types of distribution system-gravity, direct and combined	
	3 rd	4.1 General requirements, types of distribution system-gravity, direct and combined	
	4^{th}	4.2 Methods of supply – intermittent and continuous	
	5 th	4.2 Methods of supply – intermittent and continuous	
	1 st	4.3 Distribution system layout – types, comparison, suitability	
	2 nd	4.3 Distribution system layout – types, comparison, suitability	

		1
3 rd	4.4 Valves-types, features, uses, purpose-sluice valves, check valves, air valves, scour valves, Fire hydrants, Water meters	
4 th	4.4 Valves-types, features, uses, purpose-sluice valves, check valves, air valves, scour valves, Fire hydrants, Water meters	
	5.W/s plumbing in building :	
5 th	5.1 Method of connection from water mains to building supply	
1 st	5.2 General layout of plumbing arrangement for water supply in single storied and multi-storied building as per I.S. code.	
	SECTION B	
	(WASTE WATER ENGINEERING)	
2^{nd}	6.Introduction	
	6.1 Aims and objectives of sanitary engineering	
3 rd	6.2 Definition of terms related to sanitary engineering	
4 th	6.2 Definition of terms related to sanitary engineering	

 8^{th}

 9^{th}

	5 th	6.3 Systems of collection of wastes– Conservancy and Water Carriage System – features, comparison, suitability	
	1 st	6.3 Systems of collection of wastes– Conservancy and Water Carriage System – features, comparison, suitability	
		7.Quantity and Quality of sewage	
10 th	2 nd	7.1 Quantity of sanitary sewage – domestic & industrial sewage, variation in sewage flow, numerical problem on computation quantity of sanitary sewage.	
	3 rd	7.1 Quantity of sanitary sewage – domestic & industrial sewage, variation in sewage flow, numerical problem on computation quantity of sanitary sewage.	
	4 th	7.2 Computation of size of sewer, application of Chezy 's formula, Limiting velocities of flow : self- cleaning and scouring	

	5 th	7.2 Computation of size of sewer, application of Chezy 's formula, Limiting velocities of flow : self- cleaning and scouring	
11 th	1 st	7.3 General importance, strength of sewage, Characteristics of sewage-physical, chemical & biological	
	2 nd	7.3 General importance, strength of sewage, Characteristics of sewage-physical, chemical & biological	
	3 rd	7.4 Concept of sewage-sampling, tests for – solids, pH, dissolved oxygen, BOD,COD	
	$4^{ ext{th}}$	8.Sewerage system 8.1 Types of system-separate, combined, partially separate , features, comparison between the types, suitability	
	5 th	8.1 Types of system-separate, combined, partially separate , features, comparison between the types, suitability	

	1 st	8.2 Shapes of sewer – rectangular, circular, avoid- features, suitability
	2 nd	8.2 Shapes of sewer – rectangular, circular, avoid- features, suitability
$12^{\rm th}$	3 rd	8.3 Laying of sewer-setting out sewer alignment
	4 th	9.Sewer appurtenances and Sewage Disposal:
	! !	9.1 Manholes and Lamp holes – types, features, location
	5 th	9.1 Manholes and Lamp holes – types, features, location, function
	1 st	9.2 Inlets, Grease & oil trap – features, location, function
	2 nd	9.2 Inlets, Grease & oil trap – features, location, function
13 th	3 rd	9.3 Storm regulator, inverted siphon – features, location, function
	4 th	9.3 Storm regulator, inverted siphon – features, location, function
	5 th	9.4 Disposal on land – sewage farming, sewage application and dosing,
		sewage sickness-causes and remedies

	1 st	9.5 Disposal by dilution – standards for disposal in different types of water bodies, self purification of stream	
	2 nd	10.Sewage Treatment 10.1 Principles of treatment, flow diagram of conventional treatment	
	3 rd	10.1 Principles of treatment, flow diagram of conventional treatment	
	4 th	10.1 Principles of treatment, flow diagram of conventional treatment	
5 th	5 th	10.2 Primary treatment – necessity, principles, essential features, functions	
	1 st	10.2 Primary treatment – necessity, principles, essential features, functions	
	2 nd	10.3 Secondary treatment – necessity, principles, essential features, functions	
	3 rd	10.3 Secondary treatment – necessity, principles, essential features, functions	

 14^{th}

 15^{th}

	4 th	10.3 Secondary treatment – necessity, principles, essential features, functions	
		11.Sanitary plumbing for building :	
	5 th	11.1 Requirements of building drainage, layout of lavatory blocks in residential buildings, layout of building drainage	
	1 st	11.2 Plumbing arrangement of single storied & multi storied building as per I.S. code practice	
16 th	2 nd	11.3 Sanitary fixtures – features, function, and maintenance and fixing of the fixtures – water closets, flushing cisterns, urinals, inspection chambers, traps, anti- syphonage pipe	

Tejaswini Das

Chittaraijan Parida

DEAN

PRINCIPAL

HOD